”Šw‡T@ˆêŠwŠúŠú––”͈Í
¦a^b ca‚Ìbæ‚ð•\‚·
“®ŒaOP‚Ì‚ ‚ç‚í‚·ˆê”ÊŠpƒÆ
ƒÆƒ¿{2nƒÎin‚Í®”j
ŒÊ“x–@
360“x2ƒÎiƒ‰ƒWƒAƒ“j‚Æ‚·‚é
ŒÊ“x–@‚ðŽg‚Á‚Čʂ̒·‚³A–ÊÏ‚ð•\‚·B
ŒÊ‚Ì’·‚³@l rƒÆ
–Ê@@Ï@S@1/2r^2ƒÎ1/2rl
ŽOŠpŠÖ”‚Ì‘ŠŒÝŠÖŒW
sin^2Į{cos^2Į1
tanĮsinĮ/cosĮ
1{tan^2Į1/cos^2Į
ŽOŠpŠÖ”‚̕ϊ·
siniƒÆ{2nƒÎjsinƒÆ
cosiƒÆ{2nƒÎjcosƒÆ
taniƒÆ{2nƒÎjtanƒÆ
sini-Įj-sinĮ
cosi-ĮjcosĮ
tani-Įj-tanĮ
siniƒÎ{ƒÆj-sinƒÆ
cosiƒÎ{ƒÆj-cosƒÆ
taniƒÎ{ƒÆjtanƒÆ
siniƒÎ-ƒÆjsinƒÆ
cosiƒÎ-ƒÆj-cosƒÆ
taniƒÎ-ƒÆj-tanƒÆ
siniƒÎ/2{ƒÆjcosƒÆ
cosiƒÎ/2{ƒÆj-sinƒÆ
taniƒÎ/2{ƒÆj1/-tanƒÆ
siniƒÎ/2-ƒÆjcosƒÆ
cosiƒÎ/2-ƒÆjsinƒÆ
taniƒÎ/2-ƒÆj1/tanƒÆ
ŽOŠpŠÖ”‚̃Oƒ‰ƒt
1,ŽüŠú«@y=sinƒÆ,y=cosƒÆ‚Í‹¤‚ÉŽüŠú‚ª2ƒÎ
2,’lˆæ@@ã‚ÌŠÖ”‚̂Ƃ肤‚é’l‚͈̔͂Í@-1…y…1
3,‘ÎÌ«@y=sinƒÆ‚̃Oƒ‰ƒt‚ÍŒ´“_‚ÉŠÖ‚µ‚ÄAy=cosƒÆ‚̃Oƒ‰ƒt‚Íy޲‚ÉŠÖ‚µ‚Ä‘ÎÌB
@y=tanƒÆ‚ɂ‚¢‚ÄAƒÆƒÎ/2{nƒÎ‚Ìü‚ð‘Q‹ßü‚Æ‚¢‚¤
y=Asin BiĮ-Cj{D
’lˆæc-|A|{D…y…|A|{D
ŽüŠúc2ƒÎ/B
ƒOƒ‰ƒt‚ÌŽn“_cƒÆC{i2ƒÎ/Bj
‚±‚±‚ŃOƒ‰ƒt‚ÌŽn“_‚Æ‚ÍsinƒÆ0‚Ì“_‚Ì‚±‚ÆB
ã‚Ícos‚ɂ‚¢‚Ä‚à‚¢‚¦‚邱‚Æ‚¾‚ªA‚»‚Ìê‡
ƒOƒ‰ƒt‚ÌŽn“_‚ÍcosƒÆ1‚Ì“_‚Ì‚±‚Ƃł ‚éB
ŽOŠpŠÖ”‚ÌÅ‘åŬ‚ð‹‚ß‚é–â‘è‚Ìê‡A•½•ûŠ®¬‚ð—˜—p‚·‚é
‰Á–@’è—
siniA{BjsinAcosB{cosAsinB
siniA|BjsinAcosB|cosAsinB
cosiA{BjcosAcosB|sinAsinB
cosiA|BjcosAcosB{sinAsinB
taniA{BjitanA{tanBj/i1|tanAtanBj
taniA|BjitanA|tanBj/i1{tanAtanBj
2”{Šp‚ÌŒöŽ®
sin2A2sinAcosA
cos2Acos^2A|sin^2A2cos^2A|1
1|2sin^2A
tan2A2tanA/i1|tan^2Aj
3”{Šp‚ÌŒöŽ®
sin3A3sinA|4sin^3A
cos3A4cos^3A|3cosA
”¼Šp‚ÌŒöŽ®iƒRƒTƒCƒ“‚Ì2”{Šp‚ÌŒöŽ®‚æ‚è•ÏŒ`j
sin^2iA/2ji1|cosAj/2
cos^2iA/2ji1{cosAj/2
”¼Šp‚ÌŒöŽ®‚ðŽg‚¤‚Æ‚«‚Í”¼Šp‚Ì‚à‚Ì‚ÌÛŒÀ‚É‹C‚ð‚‚¯‚邱‚ÆB
’蔕ª—£
Ax^2{Bx{C{P0
¨PAx^2{Bx{C@@‚ƕό`‚µA
yP,yAx^2{Bx{C‚Ì“ñ‚‚̃Oƒ‰ƒt‚ð‘‚«P‚͈̔͂ð‹‚ß‚é•û–@B